DEVICE RELATED DISTRACTION MEASUREMENT: Preliminary Findings and Research Challenges

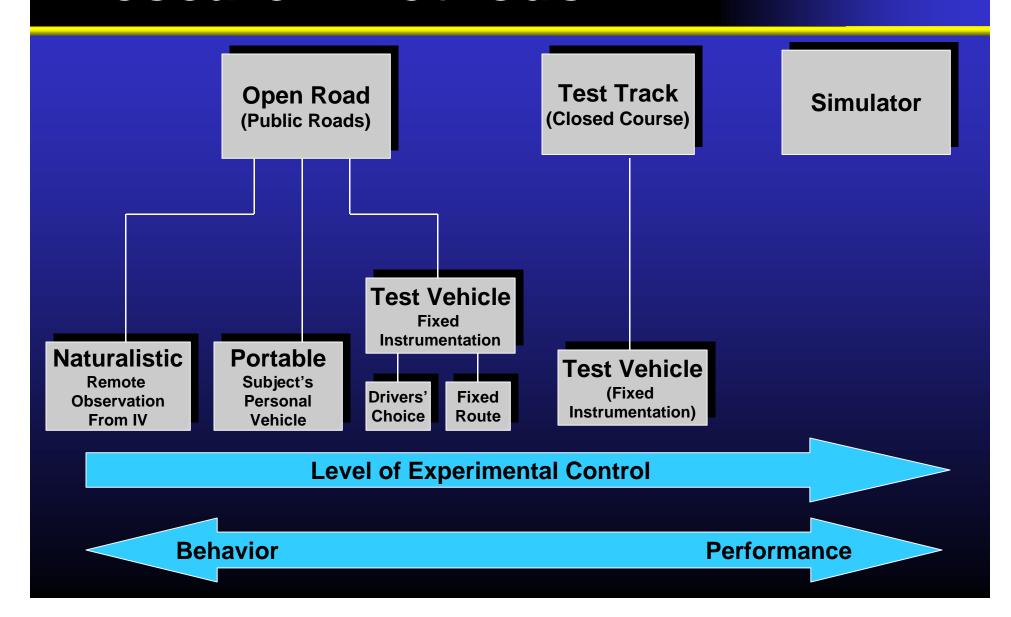
May 16, 2001

Elizabeth Mazzae, Riley Garrott, and Frank Barickman

NHTSA Vehicle Research and Test Center

Thomas Ranney

Transportation Research Center Inc.


Background

- Driver distraction is a known safety problem
 - 20-30% of crashes involved distraction (NASS CDS 95-98)
- New communication and information technologies have potential safety and social benefits
- However, new devices may worsen the distraction problem

Distraction Assessment Research Methods

NHTSA Research Program

- On-road studies
- Test track studies
- NADS studies

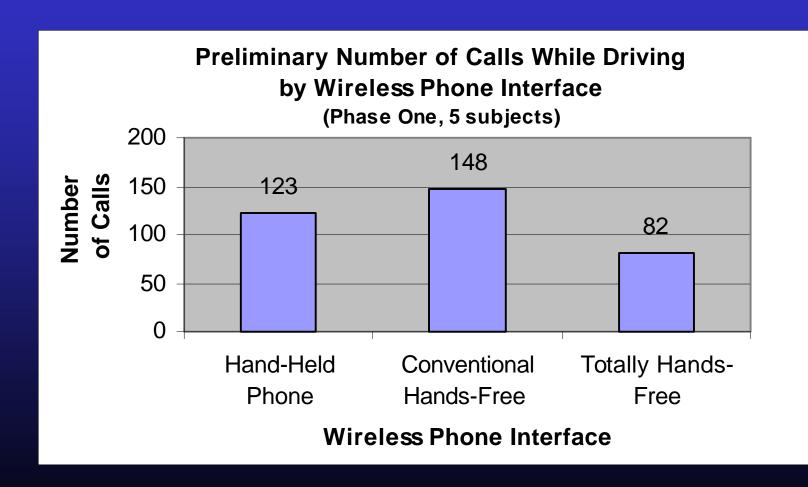
Wireless Telephone Interface Study

- Instrumented vehicles driven by members of general public for 6 weeks
 - 3 wireless phone interfaces
 - Hand-held, hands-free, hands-free with voice dialing
 - 2 weeks per phone interface
- Compare for different interface designs:
 - Use patterns
 - Conditions under which drivers are willing to use wireless phones

Research Challenges – Wireless Phone Study

- Management of large data sets
- Identify valid calls made while driving

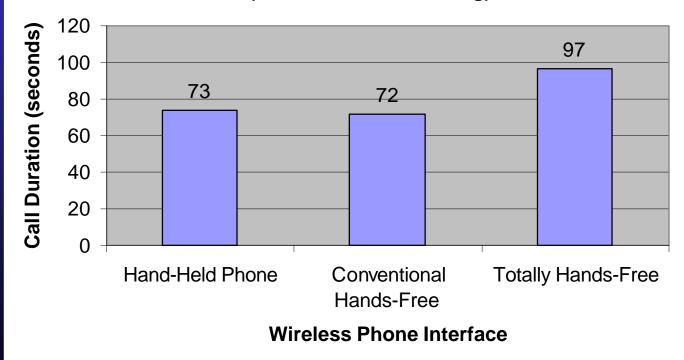
Data Reduction Effort



Phone Call Breakdown (Phase One)

Type of Call / Condition	Hand-Held Phone	Conventional Hands-Free Phone	Totally Hands- Free Phone
Made by Driver While Driving	123	148	82
Made by Driver, Wrong Interface	1	35	3
Made by Driver, Stationary Vehicle	45	43	18
Made by Passenger	3	2	2
Other	4	0	1
TOTAL	176	228	106
% Usable Calls	70%	65%	77%

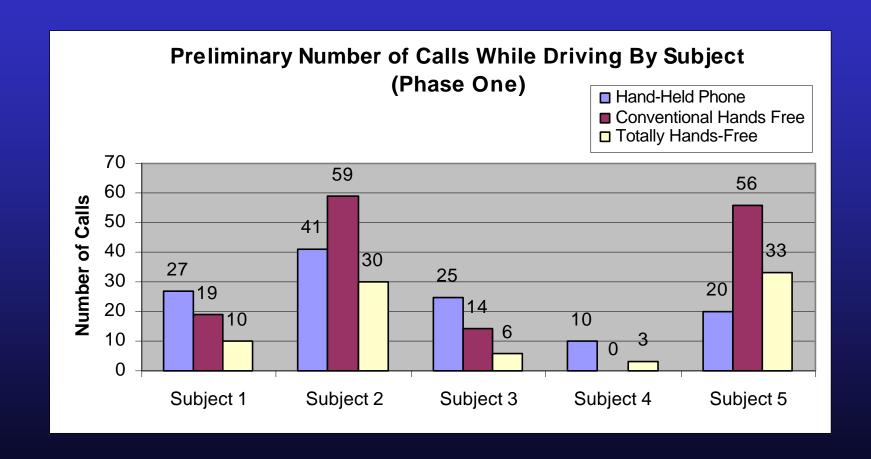
Preliminary Phone Call Data



Preliminary Phone Call Data

Preliminary Call Durations While Driving

(Phase One, 5 subjects) (does not include dialing)


Research Challenges – Wireless Phone Study

- Data loss due to field study issues
- Match exposure between conditions
- Recruitment issues, self-reporting

Preliminary Phone Call Data

Lessons Learned – Wireless Phone Study

- Selective recruitment for naturalistic studies
- Use of event markers in data

Test Track Studies

- Evaluation of voice interface for invehicle devices
- Demonstration study of everyday distractions

Effects of Voice Technology on Test Track Driving Performance

- Cooperative study between NHTSA and Transport Canada
- Compare voice and non-voice technologies for:
 - Phone dialing
 - Radio tuning
 - **E-mail** retrieval

Effects of Voice Technology on Test Track Driving Performance

- Driving performance and eye glance behavior will be analyzed
- Results will help determine what tasks are appropriate for drivers to access while driving on public roads

Research Challenges – Voice Interface Test Track Study

- Conducting research in experimental settings removes drivers' motives and reasons for engaging in distracting behaviors
- Cannot recreate the visual and operational richness of on-road conditions
- Research limited to distraction potential

- Closed-course study to assess effects of various secondary tasks on driving performance
- Subjects drove repeated laps over winding road course
- Unexpected events combined with everyday in-vehicle distractions
- Separate scores for primary (driving) and secondary (distracting) tasks

Results Based on Test Scores

- Based on examination of 12 subjects:
 - On average, performing a secondary task was associated with a 15% reduction in driving performance, relative to the average baseline score
 - On 88% of all driving laps, the secondary task impaired driving performance.

Cost of Performing Secondary Tasks while Driving

Task	Average Performance Decrement (%)
Counting	12
Reading	16
List Writing	25
Phone Dialing	8
Grooming/Eating	12
Destination Entry	18
CD Changing	17
Mean for all secondary tasks	15

Research Challenges – Demonstration Study of Everyday Distractions

- Development of closed course distraction assessment test concept
- Development of unexpected events
- Timing of unexpected events

Research Challenges – Demonstration Study of Everyday Distractions

- Creation of incentives for secondary task performance
- Development of metrics for assessing performance

Lessons Learned — People Saving People Inttp://www.nitsa.dot.gov Test Track Distraction Studies

- Scoring and competitiveness can be used to create incentive for task performance
- Typical roadway traffic control devices can be used to create a more realistic visual environment

NADS Research

National Advanced Driving Simulator (NADS)

NADS Studies

Driver workload and distraction

- Due to Wireless Communications Devices
- Due to In-Vehicle Information Systems

Research Challenges – NADS Distraction Studies

- Acclimation to simulator and devices while driving is limited due to cost
- Creation of incentives for secondary task performance
- How to create compelling conversation
- NADS validation

Overall Research Challenges

- Selecting appropriate research tool
 - Experimental methods trade realism for control
 - Naturalistic methods can lack control necessary to provide definitive answers to questions
- Relating findings to potential safety impact

Conclusions

- Understanding distraction requires a coordinated research program:
 - Naturalistic studies to evaluate drivers' willingness to engage in distracting activities under normal driving conditions and resulting errors
 - On-road experiments to understand distraction potential in routine situations
 - Closed-course experiments to understand distraction potential in routine and near-critical situations
 - Simulator studies to understand distraction effects in near-critical and critical situations

Conclusions

- Research program will attempt to:
 - Determine safety implications of device use under various conditions
 - Develop guidelines for their performance features and appropriate use in vehicles
 - Investigate integrating collision avoidance systems with information and communication technologies to mitigate their distracting effects
 - Quantify benefits and risks